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LE'ITER TO THE EDITOR 
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continuously variable exponent v 
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Fakultat fur Physik der Universitat Freiburg, Hermann-Herder-Strasse 3, D-7800 Freiburg, 
West Germany 

Received 9 November 1984 

Abstract. The true self-avoiding walk is generalised by admitting that the self-avoidance 
parameter depends on the past history of the walk. For the generalised model the end-to-end 
distance exponent v is calculated by a method that gives the same result as a Flory-type 
theory for the usual true self-avoiding walk. The exponent v is predicted to be continuously 
variable with one of the parameters of the generalised model. The resulting expression 
for the exponent U is confirmed by Monte Carlo simulations. 

Recently Amit et a1 ( 1983) have introduced the true self-avoiding walk (TSAW) which 
describes the path of a random walker who tries to avoid regions in space visited 
previously. The properties of this random-walk model are completely different from 
the properties of the usual self-avoiding walk (SAW), which is a random walk with no 
self-intersections allowed. For instance, the models differ in their critical exponents 
and even in their upper critical dimensionalities (d,=2 for the TSAW while d ,=4 for 
the SAW (de Gennes 1979)). 

In contrast to the SAW, which turned out to provide a fundamental and very accurate 
model for the configurations of polymers in good solvents (de Gennes 1979), the TSAW 

seems to be realised in very special physical situations only (Bulgadaev and Obukhov 
1983, Family and Daoud 1984). However, great theoretical interest in various gen- 
eralised random-walk models (Duxbury er al 1984, Duxbury and de Queiroz 1984 and 
references therein) stems from their unusual critical properties. 

The TSAW on a d-dimensional lattice is defined as follows. Starting at the origin, 
the random walker has to move at any step to one of the 2d nearest neighbours of the 
current position io. The probability p i  for moving to the neighbouring site i depends 
on the number of previous visits ni of site i through 

Pi -exp(-gni) ( 1 )  
where the parameter g defines the strength with which the walk avoids itself (g  > 0). 

From a self-consistent approach to the TSAW Pietronero (1983) obtained the uni- 
versal (independent of g for 0 < g < 00) end-to-end distance exponent v = 2/ (d  + 2) for 
d S d,= 2 (see also Obukhov 1984, Family and Daoud 1984, Ottinger 1985a). The 
non-trivial result v = 3 in one dimension was confirmed by Monte Carlo simulations 
(Rammal et a1 1984, Bernasconi and Pietronero 1984) and by exact enumeration 
methods (Stella et a1 1984). The universality of v has also been supported by renormali- 
sation group studies (de Queiroz et a1 1984, Obukhov and Peliti 1983, Peliti 1984). 
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This letter deals with a generalisation of the TSAW which has a very unusual critical 
property: the exponent Y varies continuously with one parameter of the model. The 
TSAW is generalised by admitting that the self-avoidance parameter g( na) depends on 
the number of previous visits nia of the random walker’s current position io. This type 
of generalisation arises quite naturally if one performs a Monte Carlo renormalisation 
group study of the TSAW (moreover, one finds an additional tendency to avoid stepping 
backwards to the site the walker visited immediately before (Ottinger 1985b); in the 
continuum language, this tendency leads to an enlarged diffusion coefficient which 
has already been observed by Amit et a1 (1983)). More precisely, we consider the 
following form of g (  n), 

= gn”, ( 2 )  

involving the parameters g and a only (this generalised TSAW includes the usual TSAW 

for a = 0). We then derive a Flory-type expression for the exponent v of the generalised 
TSAW defined by equations (1) and (2) and compare this expression with Monte Carlo 
results. A brief summary concludes the letter. 

For the one-dimensional TSAW in the case of a small self-avoidance parameter 
Obukhov (1984) obtained a partial differential equation for the dependence of the 
end-to-end probability distribution P N ( x )  on the number of steps N of the walk and 
the position x;  he found the exponent v = 2. Subsequently, Ottinger (1985a) generalised 
Obukhov’s method to arbitrary dimension (in this way, Pietronero’s result v = 2 / ( d  + 2 )  
for d s 2 was re-derived) and used it to calculate the scaling functions in one dimension. 
The same method will now be used to derive the exponent v for the generalised TSAW 

( 1 )  and ( 2 )  for arbitrary dimension d. 
That starting point is the Fokker-Planck equation 

where the first term on the right-hand side (involving the Laplace operator) represents 
a random diffusion and the second term describes a drift which is given by the gradient 
of the total number of previous visits nN ( x )  of point x because the TSAW tries to avoid 
places already visited (in the limit of large N the variables N and x can be treated as 
continuous). 

Assume that for a fixed value of the parameter a scaling laws of the form (Pietronero 
1983, Bernasconi and Pietronero 1984) 

are valid where 

RN = h,N’ ( 6 )  

is the root-mean-square displacement; then by inserting these expressions in equation 
(3) (with z = x / R N )  one obtains 

- v ( d f ( z )  + z f ’ ( z ) )  
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Provided that the asymptotic behaviour of the generalised TSAW is determined by the 
self-avoidance, the second term on the right-hand side of equation (7)  has to be of 
the same order of magnitude as the left-hand side (in the limit N - * ~ o ) .  Thus, for the 
exponent v of the generalised TSAW (independent of the parameter g) one obtains 

v = (2+ a ) / [ 2 +  ( 1  + a ) d ] .  (8) 

This result is only correct if the influence of the self-avoidance is sufficiently strong 
for N -* 00, more precisely if a > - 1 (independent of d )  and below the upper critical 
dimension d ,  = 2 (independent of a ) ,  because otherwise the pure random-walk term 
on the right-hand side of equation (7) (with v = f )  dominates. Figure 1 shows the 
dependence of the exponent v on the parameter a of the generalised TSAW in one 
dimension. For a = 0 equation (8) reproduces Pietronero's (1984) result. 

, 
- 2  -1 0 1 2 3 

Li 

Figure 1. End-to-end distance exponent Y as a function of the parameter a as predicted 
by equation (8) for the one-dimensional generalised TSAW (the broken line indicates the 
limiting value of v for a +CO) .  

Because the scaling functions f and h should be independent of g, one concludes 
from equation (7)  that 

(9) - g l / [ 2 + ( l + o ) d l  

The results (8) and (9) will now be compared with Monte Carlo simulations of the 
generalised TSAW ( 1 )  and (2) in one dimension for several values of g and a. 

For each combination of g and a displayed in table 1 10 000 walks of up to 100 000 
steps have been generated in order to estimate the root-mean-square displacement 
(these simulations took about 45 h of CPU time on a Sperry 1100/82 computer). Figure 
2 shows the results for CY = f  and two different values of g (the error bars on the data 
are smaller than the size of the symbols). The straight lines indicate the slope w =: 
predicted by equation (8) for d = 1 and a = -f. Though it is rather delicate to estimate 
asymptotic exponents from numerical results for finite N, the data of figure 2 and table 
1 provide strong support for the prediction (8). 

Equation (9) has been checked for two different values of a. This equation is 
expected to yield good results for a < 0 because in the derivation of the basic equation 
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Table 1. Monte Carlo results for the exponent U (column 4) compared with the Flory-type 
prediction U =  (2+  a ) / ( 3 + a )  (column 3)  for several values of the parameters a and g of 
the one-dimensional generalised TSAW. 

3 S 
4 0.546 * 0.009 1 9 

- 3  1 3 

--  
I 3 0.602 * 0.007 
I 1 3 0.607 * 0.009 
3 1 8 0.63 1 f 0.008 

- 2  5 3 
1 5 

I I S 
3 8 5 

7 

-- 

0.636 * 0.009 
+; 1 - 10 0.702 f 0.006 
_ _  

2 /  1 1 I , I I I I 

4 5 6 I 8 9 10 11 12 
In N 

Figure 2. Root-mean-square displacement R ,  as a function of number of steps N for the 
one-dimensional generalised TSAW for a = - 4  and two different values of g. 

(3) (Obukhov 1984) g ( n )  was assumed to be small (for Q < O  one has g(n) -*O for 
n+co). The Monte Carlo results for CY = -;, A l / A 1 , 3 =  1.58i0.02, and for CY = -f, 
h,/h, ,3 = 1.52 * 0.02, are in good agreement with equation (9), which predicts the values 
1.55 and 1.5 1, respectively. 

We have generalised the TSAW by admitting that the self-avoidance parameter 
depends on the number of previous visits of the random walker’s current position. 
This type of generalisation arises quite naturally if one renormalises the usual TSAW. 
By writing down a partial differential equation for the end-to-end probability distribu- 
tion one obtains (for arbitrary dimension) an expression for the end-to-end distance 
exponent v of the generalised TSAW. For the usual TSAW this method (introduced by 
Obukhov 1984) gives the same result as a Flory-type theory. The exponent v obtained 
in this way (equation (8)) is continuously variable with the parameter Q of the 
generalised TSAW defined by equations (1) and (2). Finally, these theoretical predictions 
for the exponent v and the coefficients A, in equation ( 6 )  have been confirmed by 
Monte Carlo simulations. 
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